

Chapter 3: Adjoints in Euclidean Spaces and Orthogonal Transformations

Exercise 22. Let $n \geq 3$. Consider the matrix $A \in Mat_n(\mathbb{R})$ defined by

$$
A := \left(\begin{array}{cccccc} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{array} \right).
$$

Let us denote by $f : \mathbb{R}^n \to \mathbb{R}^n$ the endomorphism of \mathbb{R}^n associated to A (in the canonical basis of \mathbb{R}^n).

- 1. Prove that *A* is diagonalizable.
- 2. Determine the rank of f and compute dimker(f).
- 3. Prove that $\ker(f) \oplus \text{im}(f) = \mathbb{R}^n$.
- 4. Set $F = \text{im}(f)$. Prove that F is stable under f . Prove that $f|_F \in \text{End}(F)$ is diagonalizable.
- 5. Determine a basis \mathscr{B} of *F*, and compute $B := \mathsf{M}(f \vert_F)$ B .
- 6. Diagonalize *B*.
- 7. Diagonalize *A*.

Solution of exercise 1.

- 1. ${}^t A = A$, by theorem 3.4, *A* is diagonalizable.
- 2. The rank of *f* is 2 because column 1 and column 2 are linearly independent, and they span the rest columns. dim $\ker(f) = n - \operatorname{rank}(f) = n - 2$.

3. It is not always true for "inner" direct sums, *e.g.* $\begin{pmatrix} 0 & 1 \end{pmatrix}$ $\overline{\mathcal{C}}$ 0 0 $\overline{}$ $\begin{array}{c} \end{array}$. By theorem 3.4, there exists a diagonal matrix *D*, an orthogonal matrix *P* such that $A = PD^tP$, after reordering the eigenvectors that form *P*, we assume the first two columns of P corresponding to nonzero eigenvalues and they span $\text{Im}(f)$, the rest columns correspond to the $Ker(f)$.

4. Let
$$
x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} \in \mathbb{R}^n
$$
, $Ax = \begin{pmatrix} \sum_i x_i \\ x_1 + x_n \\ \vdots \\ x_1 + x_n \\ \sum_i x_i \end{pmatrix}$, therefore $\text{Im}(f) = \text{Span}(\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix})$, denote these two vectors by w_1 , w_2 respectively. We have $Aw_1 = 2(w_1 + w_2) \subset \text{Im}(f)$ and $Aw_2 = (n-2)w_1 \subset \text{Im}(f)$. $f|_F \in \text{End}(F) =$ $\begin{pmatrix} 2 & n-2 \\ 2 & 0 \end{pmatrix}$ which is clearly diagonalizable. Or prove the faf' Diagonalizable transformation restricted to an invariant subspace is diagonalizable'.

 $\int \sum_i x_i$

 $x_1 + x_n$

 $\overline{}$

 $x_1 + x_n$ $\sum_i x_i$

 $\left(1\right)$

 $\overline{}$

1

5. Done.

6. Assume $v_{\lambda} = w_1 + \lambda w_2$ is an eigenvector of $f|_F$, then Aw is colinear with w forces: $(n-2)\lambda^2 + 2\lambda - 2 = 0$, I solve it, we get $\lambda = \frac{-1 \pm \sqrt{1 + 2(n-2)}}{n-2}$ $\frac{p(1+2(n-2))}{n-2}$. *v*_λ is an eigenvector associated with eigenvalues 2/λ = 1 ± $\sqrt{1+2(n-2)}$. (Warning: not with eigenvalue *λ*!)

Remark. Sanity check: Surely, the eigenvalues can be found by finding the eigenvalues of 2 *n* − 2 $\overline{\mathcal{C}}$ 2 0 $\overline{}$ \int , which are the same. This can verify that our calculation is correct.

7. Diagonalize *A* by adding eigenvector associated with eigenvalue 0, by letting *Ax* = *. . .* $\sqrt{\frac{1}{2}}$ = 0. They

are $e_2 - e_3, \ldots, e_{n-2} - e_{n-1}, e_1 - e_n$.

Remark. Sanity check: We know that eigenvectors of self-adjoint operator corresponding to different

eigenvalues are orthogonal to each other. Let us see in this case: v_λ = *λ . . . λ* $\sqrt{\frac{1}{2}}$ *,* we have $\langle v_{\lambda}, e_2 - e_3 \rangle = 0$,

..., $\langle v_\lambda, e_{n-2} - e_{n-3} \rangle = 0$, which is to say eigenvectors associated with $1 \pm \sqrt{1 + 2(n-2)}$ (≠ 0 when $n \ge 3$) are respectively orthogonal with eigenvectors associated with 0. The eigenvectors associated with 0 we listed above are not 2-by-2 orthogonal. The two v_λ are 2-by-2 orthogonal: $\langle v_{\lambda_1}, v_{\lambda_2} \rangle = 2 + (n-2)\lambda_1\lambda_2 =$ $2 + (n-2)\frac{-2}{n-2} = 0.$

