

Chapter 3: Adjoints in Euclidean Spaces and Orthogonal Transformations

Exercise 22. Let $n \ge 3$. Consider the matrix $A \in Mat_n(\mathbb{R})$ defined by

Let us denote by $f : \mathbb{R}^n \to \mathbb{R}^n$ the endomorphism of \mathbb{R}^n associated to *A* (in the canonical basis of \mathbb{R}^n).

- 1. Prove that *A* is diagonalizable.
- 2. Determine the rank of f and compute dim ker(f).
- 3. Prove that $\ker(f) \oplus \operatorname{im}(f) = \mathbb{R}^n$.
- 4. Set F = im(f). Prove that F is stable under f. Prove that $f|_{F} \in End(F)$ is diagonalizable.
- 5. Determine a basis \mathscr{B} of *F*, and compute $B := M(f|_F)_{\mathscr{B}}$.
- 6. Diagonalize B.
- 7. Diagonalize A.

Solution of exercise 1.

- 1. ${}^{t}A = A$, by theorem 3.4, A is diagonalizable.
- 2. The rank of *f* is 2 because column 1 and column 2 are linearly independent, and they span the rest columns. dim ker(f) = n rank(f) = n 2.

3. It is not always true for "inner" direct sums, *e.g.* $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. By theorem 3.4, there exists a diagonal matrix *D*, an orthogonal matrix *P* such that $A = PD^tP$, after reordering the eigenvectors that form *P*, we assume the first two columns of *P* corresponding to nonzero eigenvalues and they span Im(*f*), the rest columns correspond to the Ker(*f*).

4. Let
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
, $Ax = \begin{pmatrix} \sum_i x_i \\ x_1 + x_n \\ \vdots \\ x_1 + x_n \\ \sum_i x_i \end{pmatrix}$, therefore $\operatorname{Im}(f) = \operatorname{Span}(\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix}$), denote these two vectors by w_1 ,
 w_2 respectively. We have $Aw_1 = 2(w_1 + w_2) \subset \operatorname{Im}(f)$ and $Aw_2 = (n-2)w_1 \subset \operatorname{Im}(f)$. $f|_F \in \operatorname{End}(F) = \begin{pmatrix} 2 & n-2 \\ 2 & 0 \end{pmatrix}$ which is clearly diagonalizable. Or prove the fact 'Diagonalizable transformation restricted to an invariant subspace is diagonalizable'.

5. Done.

6. Assume $v_{\lambda} = w_1 + \lambda w_2$ is an eigenvector of $f|_F$, then Aw is colinear with w forces: $(n-2)\lambda^2 + 2\lambda - 2 = 0$, solve it, we get $\lambda = \frac{-1 \pm \sqrt{1+2(n-2)}}{n-2}$. v_{λ} is an eigenvector associated with eigenvalues $2/\lambda = 1 \pm \sqrt{1+2(n-2)}$. (Warning: not with eigenvalue λ !)

Remark. Sanity check: Surely, the eigenvalues can be found by finding the eigenvalues of $\begin{pmatrix} 2 & n-2 \\ 2 & 0 \end{pmatrix}$, which are the same. This can verify that our calculation is correct.

7. Diagonalize *A* by adding eigenvector associated with eigenvalue 0, by letting $Ax = \begin{pmatrix} \sum_i x_i \\ x_1 + x_n \\ \vdots \\ x_1 + x_n \\ \sum_i x_i \end{pmatrix} = 0$. They

are $e_2 - e_3, \ldots, e_{n-2} - e_{n-1}, e_1 - e_n$.

Remark. Sanity check: We know that eigenvectors of self-adjoint operator corresponding to different

eigenvalues are orthogonal to each other. Let us see in this case: $v_{\lambda} = \begin{vmatrix} \lambda \\ \vdots \\ \lambda \\ 1 \end{vmatrix}$, we have $\langle v_{\lambda}, e_2 - e_3 \rangle = 0$,

..., $\langle v_{\lambda}, e_{n-2} - e_{n-3} \rangle = 0$, which is to say eigenvectors associated with $1 \pm \sqrt{1 + 2(n-2)}$ ($\neq 0$ when $n \ge 3$) are respectively orthogonal with eigenvectors associated with 0. The eigenvectors associated with 0 we listed above are not 2-by-2 orthogonal. The two v_{λ} are 2-by-2 orthogonal: $\langle v_{\lambda_1}, v_{\lambda_2} \rangle = 2 + (n-2)\lambda_1\lambda_2 = 2 + (n-2)\frac{-2}{n-2} = 0$.